Abstract
Asynchronous programming model is commonly used in mobile systems and Web 2.0 environments. Asynchronous race detectors use algorithms that are an order of magnitude performance and space inefficient compared to conventional data race detectors. We solve this problem by identifying and addressing two important problems in reasoning about causality between asynchronous events. Unlike conventional signal-wait operations, establishing causal order between two asynchronous events is fundamentally more challenging as there is no common handle they operate on. We propose a new primitive named AsyncClock that addresses this problem by explicitly tracking causally preceding events, and show that AsyncClock can handle a wide variety of asynchronous causality models. We also address the important scalability problem of efficiently identifying heirless events whose metadata can be reclaimed. We built the first single-pass, non-graph-based Android race detector using our algorithm and applied it to find errors in 20 popular applications. Our tool incurs about 6x performance overhead, which is several times more efficient than the state-of-the-art solution. It also scales well with the execution length. We used our tool to find 147 previously unknown harmful races.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.