Abstract
The work distribution of a driven Brownian particle in an anharmonic potential is studied. The potential consists of two components: a harmonic part with a time-dependent stiffness and a time-independent logarithmic part. For arbitrary driving of the stiffness, the problem of solving the evolution equation for the joint probability density of work and particle position reduces to the solution of a Riccati differential equation. For a particular driving protocol, the Riccati equation can be solved and the exact large-work representation of the work distribution can be calculated. We propose a general form of the tail behavior. The asymptotic analysis of the work distribution is of vital importance for obtaining equilibrium free energy differences in experiments based on the Jarzynski identity. In the absence of the logarithmic component, our results agree with the work distribution for driven Brownian motion in a harmonic potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.