Abstract

The nearest-neighbor level spacing distribution is numerically investigated by directly diagonalizing disordered Anderson Hamiltonians for systems of sizes up to 100 x 100 x 100 lattice sites. The scaling behavior of the level statistics is examined for large spacings near the delocalization-localization transition and the correlation length exponent is found. By using high-precision calculations we conjecture a new interpolation of the critical cumulative probability, which has size-independent asymptotic form \ln I(s) \propto -s^{\alpha} with \alpha = 1.0 \pm 0.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.