Abstract
We consider an optimal distributed control problem in a planar convex domain with smooth boundary and a small parameter at the highest derivatives of an elliptic operator. The zero Dirichlet condition is given on the boundary of the domain, and the control is included additively in the inhomogeneity. The set of admissible controls is the unit ball in the corresponding space of square integrable functions. Solutions of the obtained boundary value problems are considered in the generalized sense as elements of a Hilbert space. The optimality criterion is the sum of the squared norm of the deviation of the state from a given state and the squared norm of the control with a coefficient. This structure of the optimality criterion makes it possible to strengthen, if necessary, the role of either the first or the second term of the criterion. In the first case, it is more important to achieve the desired state, while, in the second case, it is preferable to minimize the resource consumption. We study in detail the asymptotics of the problem generated by the sum of the Laplace operator with a small coefficient and a first-order differential operator. A feature of the problem is the presence of the characteristics of the limit operator which touch the boundary of the domain. We obtain a complete asymptotic expansion of the solution of the problem in powers of the small parameter in the case where the optimal control is an interior point of the set of admissible controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.