Abstract

The Wigner equation is considered for a system of a large numberN of identical particles with interaction factor of the order of 1/N. In both the Bose and the Fermi cases, we construct the asymptotics of the solution of the Cauchy problem for this equation with regard to the exchange effect for the case in which the Planck constant is of the order ofN −1/d , whered is the space dimension. This asymptotics is interpreted in terms of the theory of the complex germ on a curved phase space equivalent to the space of functions with values on the Riemann sphere in the Fermi case and on the Lobachevskii plane in the Bose case. The classical equations of motion in both cases are reduced to the Vlasov equation; since the phase space is infinite-dimensional, the complex germ is subjected to additional conditions depending on the type of statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.