Abstract

The computational complexity of integer linear forms is studied. By l2(A) we denote the minimal number of the additions and subtractions required for computing the system of p linear forms in q variables x1, x2, …, xq that are defined by an integer matrix A of size p × q (repeated use of the results of intermediate computation is permitted). We show that l2(A) ⩾ log D(A), where D(A) is the maximum of the absolute values of the minors of A over all minors from order 1 to order min (p, q) (Theorem 1). Moreover, for each sequence of matrices A(n) of size p(n) × q(n) satisfying the condition p + q = o ((log log D(A))1/2) as n → ∞ the bound l2(A) ⩽ log D(A) + o(log D(A)) is valid (Theorem 2). Hence, for all fixed (and even weakly increasing) sizes of matrices that determine a system of integer linear forms, the upper bound on the computational complexity of this system is asymptotically equal to the lower bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.