Abstract

We generalize the classical work of de Bruijn, Knuth and Rice (giving the asymptotics of the average height of Dyck paths of length $n$) to the case of $p$–watermelons with a wall (i.e., to a certain family of $p$ nonintersecting Dyck paths; simple Dyck paths being the special case $p=1$.) An exact enumeration formula for the average height is easily obtained by standard methods and well–known results. However, straightforwardly computing the asymptotics turns out to be quite complicated. Therefore, we work out the details only for the simple case $p=2$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.