Abstract

Let $X_{1},X_{2},\ldots$ be random elements of the Skorokhod space $D(\mathbb{R})$ and $\xi_{1},\xi_{2},\ldots$ positive random variables such that the pairs $(X_{1},\xi_{1}),(X_{2},\xi_{2}),\ldots$ are independent and identically distributed. We call the random process $(Y(t))_{t\in\mathbb{R}}$ defined by $Y(t):=\sum_{k\geq0}X_{k+1}(t-\xi_{1}-\cdots-\xi_{k})\mathbf{1}_{\{\xi_{1}+\cdots+\xi_{k}\leq t\}}$, $t\in\mathbb{R}$ random process with immigration at the epochs of a renewal process. Assuming that $X_{k}$ and $\xi_{k}$ are independent and that the distribution of $\xi_{1}$ is nonlattice and has finite mean we investigate weak convergence of $(Y(t))_{t\in\mathbb{R}}$ as $t\to\infty$ in $D(\mathbb{R})$ endowed with the $J_{1}$-topology. The limits are stationary processes with immigration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call