Abstract

For arbitrary Borel probability measures on the real line, necessary and sufficient conditions are presented that characterize best purely atomic approximations relative to the classical Levy probability metric, given any number of atoms, and allowing for additional constraints regarding locations or weights of atoms. The precise asymptotics (as the number of atoms goes to infinity) of the approximation error is identified for the important special cases of best uniform (i.e. all atoms having equal weight) and best (i.e. unconstrained) approximations, respectively. When compared to similar results known for other probability metrics, the results for Levy approximations are more complete and require fewer assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.