Abstract
We study the long-run behaviour of interactive Markov chains on infinite product spaces. The behaviour at a single site is influenced by the local situation in some neighbourhood and by a random signal about the average situation throughout the whole system. The asymptotic behaviour of such Markov chains is analyzed on the microscopic level and on the macroscopic level of empirical fields. We give sufficient conditions for convergence on the macroscopic level. Combining a convergence result from the theory of random systems with complete connections with a perturbation of the Dobrushin-Vasserstein contraction technique, we show that macroscopic convergence implies that the underlying microscopic process has local asymptotic loss of memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.