Abstract
In this paper, we examine an input-constrained erasure channel and we characterize the asymptotics of its capacity when the erasure rate is low. More specifically, for a general memoryless erasure channel with its input supported on an irreducible finite-type constraint, we derive partial asymptotics of its capacity, using some series expansion type formula of its mutual information rate; and for a binary erasure channel with its first-order Markovian input supported on the $(1, \infty )$ -RLL constraint based on the concavity of its mutual information rate with respect to some parameterization of the input, we numerically evaluate its first-order Markov capacity and further derive its full asymptotics. The asymptotics obtained in this paper, when compared with the recently derived feedback capacity for a binary erasure channel with the same input constraint, enable us to draw the conclusion that feedback may increase the capacity of an input-constrained channel, even if the channel is memoryless.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.