Abstract

AbstractThe ground state energy of an atom of nuclear charge Ze in a magnetic field B is evaluated exactly to leading order as Z → ∞. In this and a companion work (see [28]) we show that there are five regions as Z → ∞: B < Z4/3, B ∼ Z4/3, Z4/3 < B < Z3, B ∼ Z3, B > Z3. Regions 1, 2, 3, and 4 (and conceivably 5) are relevant for neutron stars. Different regions have different physics and different asymptotic theories. Regions 1, 2, and 3 are described by a simple density functional theory of the semiclassical Thomas‐Fermi form. Here we concentrate mainly on regions 4 and 5 which cannot be so described, although 3, 4, and 5 have the common feature (as shown here) that essentially all electrons are in the lowest Landau band. Region 5 does have, however, a simple non‐classical density functional theory (which can be solved exactly). Region 4 does not, but, surprisingly, it can be described by a novel density matrix functional theory. © 1994 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.