Abstract
This paper is devoted to the asymptotic behavior of all eigenvalues of the increasing finite principal sections of an infinite symmetric (in general non-Hermitian) Toeplitz matrix. The symbol of the infinite matrix is supposed to be moderately smooth and to trace out a simple loop in the complex plane. The main result describes the asymptotic structure of all eigenvalues. The asymptotic expansions constructed are uniform with respect to the location of the eigenvalues in the bulk of the spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.