Abstract
ABSTRACTWe study the class of bivariate penalised splines that use tensor product splines and a smoothness penalty. Similar to Claeskens, G., Krivobokova, T., and Opsomer, J.D. [(2009), ‘Asymptotic Properties of Penalised Spline Estimators’, Biometrika, 96(3), 529–544] for the univariate penalised splines, we show that, depending on the number of knots and penalty, the global asymptotic convergence rate of bivariate penalised splines is either similar to that of tensor product regression splines or to that of thin plate splines. In each scenario, the bivariate penalised splines are found rate optimal in the sense of Stone, C.J. [(12, 1982), ‘Optimal Global Rates of Convergence for Nonparametric Regression’, The Annals of Statistics, 10(4), 1040–1053] for a corresponding class of functions with appropriate smoothness. For the scenario where a small number of knots is used, we obtain expressions for the local asymptotic bias and variance and derive the point-wise and uniform asymptotic normality. The theoretical results are applicable to tensor product regression splines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.