Abstract

We consider the Wiener sausage among Poissonian obstacles. The obstacle is called hard if Brownian motion entering the obstacle is immediately killed, and is called soft if it is killed at certain rate. It is known that Brownian motion conditioned to survive among obstacles is confined in a ball near its starting point. We show the weak law of large numbers, large deviation principle in special cases and the moment asymptotics for the volume of the corresponding Wiener sausage. One of the consequence of our results is that the trajectory of Brownian motion almost fills the confinement ball.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.