Abstract
We study asymptotics for solutions of Maxwell's equations, in fact of the Hodge-de Rham equation $(d+\delta)u=0$ without restriction on the form degree, on a geometric class of stationary spacetimes with a warped product type structure (without any symmetry assumptions), which in particular include Schwarzschild-de Sitter spaces of all spacetime dimensions $n\geq 4$. We prove that solutions decay exponentially to $0$ or to stationary states in every form degree, and give an interpretation of the stationary states in terms of cohomological information of the spacetime. We also study the wave equation on differential forms and in particular prove analogous results on Schwarzschild-de Sitter spacetimes. We demonstrate the stability of our analysis and deduce asymptotics and decay for solutions of Maxwell's equations, the Hodge-de Rham equation and the wave equation on differential forms on Kerr-de Sitter spacetimes with small angular momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.