Abstract
We study the ergodicity of stochastic reaction–diffusion equation driven by subordinate Brownian motion. After establishing the strong Feller property and irreducibility of the system, we prove the tightness of the solution’s law. These properties imply that this stochastic system admits a unique invariant measure according to Doob’s and Krylov–Bogolyubov’s theories. Furthermore, we establish a large deviation principle for the occupation measure of this system by a hyper-exponential recurrence criterion. It is well known that S(P)DEs driven by α-stable type noises do not satisfy Freidlin–Wentzell type large deviation, our result gives an example that strong dissipation overcomes heavy tailed noises to produce a Donsker–Varadhan type large deviation as time tends to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.