Abstract
In this paper we study planar first-passage percolation (FPP) models on random Delaunay triangulations. In [14], Vahidi-Asl and Wierman showed, using sub-additivity theory, that the rescaled first-passage time converges to a finite and non-negative constant μ. We show a sufficient condition to ensure that μ>0 and derive some upper bounds for fluctuations. Our proofs are based on percolation ideas and on the method of martingales with bounded increments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.