Abstract
In this paper, we introduce and analyze several different notions of Weyl almost periodic functions and Weyl ergodic components in Lebesgue spaces with variable exponent Lp(x). We investigate the invariance of (asymptotical) Weyl almost periodicity with variable exponent under the actions of convolution products, providing also some illustrative applications to abstract fractional differential inclusions in Banach spaces. The introduced classes of generalized (asymptotically) Weyl almost periodic functions are new even in the case that the function p(x) has a constant value p≥1, provided that the functions ϕ(x) and F(l,t) under our consideration satisfy ϕ(x)≠x or F(l,t)≠l(−1)/p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.