Abstract
The Foster–Lyapunov theorem and its variants serve as the primary tools for studying the stability of queueing systems. In addition, it is well known that setting the drift of the Lyapunov function equal to zero in steady state provides bounds on the expected queue lengths. However, such bounds are often very loose due to the fact that they fail to capture resource pooling effects. The main contribution of this paper is to show that the approach of “setting the drift of a Lyapunov function equal to zero” can be used to obtain bounds on the steady-state queue lengths which are tight in the heavy-traffic limit. The key is to establish an appropriate notion of state-space collapse in terms of steady-state moments of weighted queue length differences and use this state-space collapse result when setting the Lyapunov drift equal to zero. As an application of the methodology, we prove the steady-state equivalent of the heavy-traffic optimality result of Stolyar for wireless networks operating under the MaxWeight scheduling policy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.