Abstract
We consider a discrete-time -equivariant cubic dynamical system depending upon a real parameter. The system under consideration is a particular case of a discrete analogue to the principal -equivariant differential equations. We rigorously prove that the system has an asymptotically stable heteroclinic cycle, relatively to an open subset of a compact subspace of the plane, for values of the parameter in the interval . We explore properties of the omega-limit sets for the points attracted by the heteroclinic cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Difference Equations and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.