Abstract

Person-time incidence rates are frequently used in medical research. However, standard estimation theory for this measure of event occurrence is based on the assumption of independent and identically distributed (iid) exponential event times, which implies that the hazard function remains constant over time. Under this assumption and assuming independent censoring, observed person-time incidence rate is the maximum-likelihood estimator of the constant hazard, and asymptotic variance of the log rate can be estimated consistently by the inverse of the number of events. However, in many practical applications, the assumption of constant hazard is not very plausible. In the present paper, an average rate parameter is defined as the ratio of expected event count to the expected total time at risk. This rate parameter is equal to the hazard function under constant hazard. For inference about the average rate parameter, an asymptotically robust variance estimator of the log rate is proposed. Given some very general conditions, the robust variance estimator is consistent under arbitrary iid event times, and is also consistent or asymptotically conservative when event times are independent but nonidentically distributed. In contrast, the standard maximum-likelihood estimator may become anticonservative under nonconstant hazard, producing confidence intervals with less-than-nominal asymptotic coverage. These results are derived analytically and illustrated with simulations. The two estimators are also compared in five datasets from oncology studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call