Abstract
Families of asymptotically regular LDPC block code ensembles can be formed by terminating (J, K)-regular protograph-based LDPC convolutional codes. By varying the termination length, we obtain a large selection of LDPC block code ensembles with varying code rates and substantially better iterative decoding thresholds than those of (J, K)-regular LDPC block code ensembles, despite the fact that the terminated ensembles are almost regular. Also, by means of an asymptotic weight enumerator analysis, we show that minimum distance grows linearly with block length for all of the ensembles in these families, i.e., the ensembles are asymptotically good. We find that, as the termination length increases, families of “asymptotically regular” codes with capacity approaching iterative decoding thresholds and declining minimum distance growth rates are obtained, allowing a code designer to trade-off between distance growth rate and threshold. Further, we show that the thresholds and the distance growth rates can be improved by carefully choosing the component protographs used in the code construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.