Abstract

ABSTRACTThe score test and the GOF test for the inverse Gaussian distribution, in particular the latter, are known to have large size distortion and hence unreliable power when referring to the asymptotic critical values. We show in this paper that with the appropriately bootstrapped critical values, these tests become second-order accurate, with size distortion being essentially eliminated and power more reliable. Two major generalizations of the score test are made: one is to allow the data to be right-censored, and the other is to allow the existence of covariate effects. A data mapping method is introduced for the bootstrap to be able to produce censored data that are conformable with the null model. Monte Carlo results clearly favour the proposed bootstrap tests. Real data illustrations are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.