Abstract

We develop a methodology (referred to as kinetic prediction) for predicting time series undergoing unknown changes in their data generating distributions. Based on Kolmogorov-Tikhomirov’s ${\varepsilon }$ -entropy, we propose a concept called ${\varepsilon }$ -predictability that quantifies the size of a model class (which can be parametric or nonparametric) and the maximal number of abrupt structural changes that guarantee the achievability of asymptotically optimal prediction. Moreover, for parametric distribution families, we extend the aforementioned kinetic prediction with discretized function spaces to its counterpart with continuous function spaces, and propose a sequential Monte Carlo-based implementation. We also extend our methodology for predicting smoothly varying data generating distributions. Under reasonable assumptions, we prove that the average predictive performance converges almost surely to the oracle bound, which corresponds to the case that the data generating distributions are known in advance. The results also shed some light on the so called “prediction-inference dilemma.” Various examples and numerical results are provided to demonstrate the wide applicability of our methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.