Abstract
We consider the problem of approximating optimal in the Minimum Mean Squared Error (MMSE) sense nonlinear filters in a discrete time setting, exploiting properties of stochastically convergent state process approximations. More specifically, we consider a class of nonlinear, partially observable stochastic systems, comprised by a (possibly nonstationary) hidden stochastic process (the state), observed through another conditionally Gaussian stochastic process (the observations). Under general assumptions, we show that, given an approximating process which, for each time step, is stochastically convergent to the state process, an approximate filtering operator can be defined, which converges to the true optimal nonlinear filter of the state in a strong and well defined sense. In particular, the convergence is compact in time and uniform in a completely characterized measurable set of probability measure almost unity, also providing a purely quantitative justification of Egoroff's Theorem for the problem at hand. The results presented in this paper can form a common basis for the analysis and characterization of a number of heuristic approaches for approximating optimal nonlinear filters, such as approximate grid based techniques, known to perform well in a variety of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.