Abstract
Ordered binary decision diagrams (OBDDs) are nowadays the most common dynamic data structure or representation type for Boolean functions. Among the many areas of application are verification, model checking, and computer aided design. For many functions it is easy to estimate the OBDD size but asymptotically optimal bounds are only known in simple situations. In this paper, methods for proving asymptotically optimal bounds are presented and applied to the solution of some basic problems concerning OBDDs. The largest size increase by a synthesis step of π-OBDDs followed by an optimal reordering is determined as well as the largest ratio of the size of deterministic finite automata and quasi-reduced OBDDs compared to the size of OBDDs. Moreover, the worst case OBDD size of functions with a given number of 1-inputs is investigated.KeywordsModel CheckBoolean FunctionOptimal BoundSynthesis StepBinary Decision DiagramThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.