Abstract

In [4] we introduced a general method for obtaining asymptotically pointwise optimal procedures in sequential analysis when the cost of observation is constant. The validity of this method in both estimation and testing was established in [4] for Koopman-Darmois families, and in [5] for the general case. Section 2 of this paper generalizes Theorem 2.1 of [4] to cover essentially the case of estimation with variable cost of observation. In Section 3 we show that in estimation problems, under a very weak condition, for constant cost of observation, the asymptotically pointwise optimal rules we propose are optimal in the sense of Kiefer and Sacks [9]. The condition given is further investigated in the context of Bayesian sequential estimation in Section 4 and is shown to be satisfied if reasonable estimates based on the method of moments exist. In Section 5 we consider the robustness of our rules under a change of prior. The main result of this section is given by Theorem 5.1. Finally Theorem 5.2 deals with a generalization of Wald's [12] theory of asymptotically minimax rules and an application of that theory to the Bayesian model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.