Abstract

We consider the m-Cycle Cover Problem of covering a complete undirected graph by m vertex-nonadjacent cycles of extremal total edge weight. The so-called TSP approach to the construction of an approximation algorithm for this problem with the use of a solution of the traveling salesman problem (TSP) is presented. Modifications of the algorithm for the Euclidean Max m-Cycle Cover Problem with deterministic instances (edge weights) in a multidimensional Euclidean space and the Random Min m-Cycle Cover Problem with random instances UNI(0,1) are analyzed. It is shown that both algorithms have time complexity O(n3) and are asymptotically optimal for the number of covering cycles m = o(n) and \(m \leqslant \frac{{n^{1/3} }} {{\ln n}}\), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.