Abstract

Asymptotically nonlocal field theories interpolate between Lee-Wick theories with multiple propagator poles, and ghost-free nonlocal theories. Previous work on asymp- totically nonlocal scalar, Abelian, and non-Abelian gauge theories has demonstrated the existence of an emergent regulator scale that is hierarchically smaller than the lightest Lee-Wick partner, in a limit where the Lee-Wick spectrum becomes dense and decoupled. We generalize this construction to linearized gravity, and demonstrate the emergent regula- tor scale in three examples: by studying the resolution of the singularity (i) at the origin in the classical solution for the metric of a point particle, and (ii) in the nonrelativistic gravitational potential computed via a one-graviton exchange amplitude; (iii) we also show how this derived scale regulates the one-loop graviton contribution to the self energy of a real scalar field. We comment briefly on the generalization of our approach to the full, nonlinear theory of gravity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call