Abstract

In this article, we analyze a residual-based a posteriori error estimates of the spatial errors for the semidiscrete local discontinuous Galerkin (LDG) method applied to the one-dimensional second-order wave equation. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We apply the optimal L2 error estimates and the superconvergence results of Part I of this work [Baccouch, Numer Methods Partial Differential Equations 30 (2014), 862–901] to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivative, at a fixed time, converge to the true spatial errors in the L2-norm under mesh refinement. The order of convergence is proved to be , when p-degree piecewise polynomials with are used. As a consequence, we prove that the LDG method combined with the a posteriori error estimation procedure yields both accurate error estimates and superconvergent solutions. Our computational results show higher convergence rate. We further prove that the global effectivity indices, for both the solution and its derivative, in the L2-norm converge to unity at rate while numerically they exhibit and rates, respectively. Numerical experiments are shown to validate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1461–1491, 2015

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.