Abstract
In this paper, we will analyze the blow-up behaviors for solutions to the Laplacian equation with exponential Neumann boundary condition. In particular, the boundary value is with a kind of singular data. We show a Brezis–Merle type concentration-compactness theorem, calculate the blow up value at the blow-up point, and give a point-wise estimate for the profile of the solution sequence at the blow-up point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.