Abstract
In this study, we consider the test statistics that can be written as the sample average of data and derive their limiting distributions under the maximum likelihood (ML) and the quasi-maximum likelihood (QML) frameworks. We first generalize the asymptotic variance formula suggested in Pierce (Ann Stat 10(2):475–478, 1982) in the ML framework and illustrate its applications through some well-known test statistics: (1) the skewness statistic, (2) the kurtosis statistic, (3) the Cox statistic, (4) the information matrix test statistic, and (5) the Durbin’s h-statistic. We next provide a similar result in the QML setting and illustrate its applications by providing two examples. Illustrations show the simplicity and the effectiveness of our results for the asymptotic variance of test statistics, and therefore, they are recommended for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.