Abstract
We improve over a sufficient condition given in [8] for uniqueness of a nondegenerate critical point in best rational approximation of prescribed degree over the conjugate-symmetric Hardy space $\overline{\cal H}^2_{{\bf R}}$ of the complement of the disk. The improved condition connects to error estimates in AAK approximation, and is necessary and sufficient when the function to be approximated is of Markov type. For Markov functions whose defining measure satisfies the Szego condition, we combine what precedes with sharp asymptotics in multipoint Pade approximation from [43], [40] in order to prove uniqueness of a critical point when the degree of the approximant goes large. This lends perspective to the uniqueness issue for more general classes of functions defined through Cauchy integrals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.