Abstract

A two-cart with an inverted-pendulum system is a nonlinear, nonminimum phase system with nonhyperbolic zero dynamics. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems with nonhyperbolic zero dynamics and pointed out that the nonhyperbolicity may be challenging to the application of the standard inversion-based tracking technique. We first show that nonhyperbolicity is not necessary for the applicability of the output regulation theory. In particular, the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a class of sinusoidal reference inputs is actually solvable by the standard output regulation theory. Moreover, an approximation method for calculating the center manifold equation associated with the output regulation problem for general nonlinear systems is given. This approach does not rely on the hyperbolicity condition and, hence, applies to a large class of nonlinear systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.