Abstract

In this paper, a novel adaptive control strategy is presented for the tracking control of a class of multi-input-multioutput uncertain nonlinear systems with external disturbances to place user-defined time-varying constraints on the system state. Our contribution includes a step forward beyond the usual stabilization result to show that the states of the plant converge asymptotically, as well as remain within user-defined time-varying bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system from the original one, whose asymptotic stability guarantees both the satisfaction of the time-varying restrictions and the asymptotic tracking performance of the original system. The uncertainties of the transformed system are overcome by an online neural network (NN) approximator, while the external disturbances and NN reconstruction error are compensated by the robust integral of the sign of the error signal. Via standard Lyapunov method, asymptotic tracking performance is theoretically guaranteed, and all the closed-loop signals are bounded. The requirement for a prior knowledge of bounds of uncertain terms is relaxed. Finally, simulation results demonstrate the merits of the proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.