Abstract
For a linear regression model, the necessary and sufficient condition for the asymptotic consistency of the least squares estimator is known. An analogous condition for the nonlinear model is considered in this paper. The condition is proved to be necessary for the existence of any weakly consistent estimator, including the least squares estimator. It is also sufficient for the strong consistency of the nonlinear least squares estimator if the parameter space is finite. For an arbitrary compact parameter space, its sufficiency for strong consistency is proved under additional conditions in a sense weaker than previously assumed. The proof involves a novel use of the strong law of large numbers in $C(S)$. Asymptotic normality is also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.