Abstract
This chapter provides an in-depth study of power variation and its asymptotics for Brownian and Levy semistationary (BSS and LSS) processes. Power variation techniques are used to draw inference on the integrated variance process. The theory is rather well-developed for semimartingales, in particular for the Brownian case, but some theory can also be developed for Levy-driven models. Beyond the semimartingale framework, the asymptotic theory for power variation for LSS processes turns out to be even harder and the corresponding proofs rely on different techniques, e.g. using concepts from Malliavin calculus. We present the key results in the semimartingale and the nonsemimartingale case. The latter, particularly in the context of LSS rather than BSS processes, is still a relatively open area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.