Abstract
AbstractThis article is concerned with asymptotic theory for local estimators based on Bregman divergence. We consider a localized version of Bregman divergence induced by a kernel weight and minimize it to obtain the local estimator. We provide a rigorous proof for the asymptotic consistency of the local estimator in a situation where both the sample size and the bandwidth involved in the kernel weight increase. Asymptotic normality of the local estimator is also developed under the same asymptotic scenario. Monte Carlo simulations are also performed to confirm the theoretical results. The Canadian Journal of Statistics 47: 628–652; 2019 © 2019 Statistical Society of Canada
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Canadian Journal of Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.