Abstract
Test statistics that are suitable for testing composite hypotheses are typically non-pivotal, and conservative bounds are commonly used to test composite hypotheses. In this paper, we propose a testing procedure for composite hypotheses that incorporates additional sample information. This avoids, as n->oo, the use of conservative bounds and leads to tests with better power than standard tests. The testing procedure satisfies a novel similarity condition that is relevant for asymptotic tests of composite hypotheses, and we show that this is a necessary condition for a test to be unbiased. The procedure is particularly useful for simultaneous testing of multiple inequalities, in particular when the number of inequalities is large.This is the situation for the multiple comparisons of forecasting models, and we show that the new testing procedure dominates the 'reality check' of White (2000) and avoids certain pitfalls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.