Abstract

We study black holes carrying higher spin charge in AdS3 within the framework of SL(N, R) x SL(N, R) Chern-Simons theory. Focussing attention on the N=4 case, we explicitly analyze the asymptotic symmetry algebra of black hole solutions with a chemical potential for spin-four charge. We demonstrate that the background describes an RG flow between an IR fixed point with W_4 symmetry and a UV fixed point with W-symmetry associated to a non-principal embedding of sl(2) in sl(4). Matching Chern-Simons equations with Ward identities of the deformed CFT, we show that the UV stress tensor is twisted by a certain U(1) current, and the flow is triggered by an operator with dimension 4/3 at the UV fixed point. We find independent confirmation of this picture via a consistent formulation of thermodynamics with respect to this UV fixed point. We further analyze the thermodynamics of multiple branches of black hole solutions for N=4,5 and find that the BTZ-branch, dominant at low temperatures, ceases to exist at higher temperatures following a merger with a thermodynamically unstable branch. We also point out an interesting connection between the RG flows and generalized KdV hierarchies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call