Abstract

We analyze the asymptotic symmetries and their associated charges at spatial infinity in four-dimensional asymptotically-flat spacetimes. We use the covariant formalism of Ashtekar and Hansen where the asymptotic fields and symmetries live on the three-manifold of spatial directions at spatial infinity, represented by a timelike unit-hyperboloid (or de Sitter space). Using the covariant phase space formalism, we derive formulae for the charges corresponding to asymptotic supertranslations and Lorentz symmetries at spatial infinity. With the motivation of, eventually, proving that these charges match with those defined on null infinity—as has been conjectured by Strominger—we do not impose any restrictions on the choice of conformal factor in contrast to previous work on this problem. Since we work with a general conformal factor we expect that our charge expressions will be more suitable to prove the matching of the Lorentz charges at spatial infinity to those defined on null infinity, as has been recently shown for the supertranslation charges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.