Abstract
We develop a fracture-mechanics-based theoretical framework that considers the free energy competition between entropic elasticity of polypeptide chains and rupture of peptide hydrogen bonds, which we use here to provide an explanation for the intrinsic strength limit of protein domains at vanishing rates. Our analysis predicts that individual protein domains stabilized only by hydrogen bonds cannot exhibit rupture forces larger than approximately 200 pN in the asymptotic limit. This result explains earlier experimental and computational observations that indicate an asymptotical strength limit at vanishing pulling rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.