Abstract

It is known that, after a quench to zero temperature (T=0), two-dimensional (d=2) Ising ferromagnets with short-range interactions do not always relax to the ordered state. They can also fall in infinitely long-lived striped metastable states with a finite probability. In this paper, we study how the abundance of striped states is affected by long-range interactions. We investigate the relaxation of d=2 Ising ferromagnets with power-law interactions by means of Monte Carlo simulations at both T=0 and T≠0. For T=0 and the finite system size, the striped metastable states are suppressed by long-range interactions. In the thermodynamic limit, their occurrence probabilities are consistent with the short-range case. For T≠0, the final state is always ordered. Further, the equilibration occurs at earlier times with an increase in the strength of the interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call