Abstract
This paper studies the asymptotic stability of shock profiles and rarefaction waves under space-periodic perturbations for one-dimensional convex scalar viscous conservation laws. For the shock profile, we show that the solution approaches the background shock profile with a constant shift in the $ L^\infty(\mathbb{R}) $ norm at exponential rates. The new phenomena contrasting to the case of localized perturbations is that the constant shift cannot be determined by the initial excessive mass in general, which indicates that the periodic oscillations at infinities make contributions to this shift. And the vanishing viscosity limit for the shift is also shown. The key elements of the poof consist of the construction of an ansatz which tends to two periodic solutions as $ x \rightarrow \pm\infty, $ respectively, and the anti-derivative variable argument, and an elaborate use of the maximum principle. For the rarefaction wave, we also show the stability in the $ L^\infty(\mathbb{R}) $ norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.