Abstract

We investigate the asymptotic behavior of solutions of the initial boundary value problem for the generalized KdV–Burgers equation u t + f ( u ) x = u x x − u x x x on the half-line with the boundary condition u ( 0 , t ) = u − . The corresponding Cauchy problems of the behaviors of weak and strong rarefaction waves have respectively been studied by Wang and Zhu [Z.A. Wang, C.J. Zhu, Stability of the rarefaction wave for the generalized KdV–Burgers equation, Acta Math. Sci. 22B (3) (2002) 309–328] and Duan and Zhao [R. Duan, H.J. Zhao, Global stability of strong rarefaction waves for the generalized KdV–Burgers equation, Nonlinear Anal. TMA 66 (2007) 1100–1117]. In the present problem, on the basis of the Dirichlet boundary conditions, the asymptotic states are divided into five cases dependent on the signs of the characteristic speeds f ′ ( u ± ) . In the cases of 0 ≤ f ′ ( u − ) < f ′ ( u + ) , we prove the global existence of solutions and asymptotic stability of the weak rarefaction waves when the initial disturbance is small. Also, we can get asymptotic stability of the strong rarefaction waves when f ( u ) satisfies a certain growth condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.