Abstract

We introduce a theorem on linearized asymptotic stability for nonlinear fractional delay differential equations (FDDEs) with a Caputo order α∈(1,2), which can be directly used for fractional delay neural networks. It relies on three technical tools: a detailed root analysis for the characteristic equation, estimation for the generalized Mittag-Leffler function, and Lyapunov's first method. We propose coefficient-type criteria to ensure the stability of linear FDDEs through a detailed root analysis for the characteristic equation obtained by the Laplace transform. Further, under the criteria, we provide a wise expression of the generalized Mittag-Leffler functions and prove their polynomial long-time decay rates. Utilizing the well-established Lyapunov's first method, we establish that an equilibrium of a nonlinear Caputo FDDE attains asymptotically stability if its linearization system around the equilibrium solution is asymptotically stable. Finally, as a by-product of our results, we explicitly describe the asymptotic properties of fractional delay neural networks. To illustrate the effectiveness of our theoretical results, numerical simulations are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call