Abstract

We consider a ground state (soliton) of a Hamiltonian PDE. We prove that if the soliton is orbitally stable, then it is also asymptotically stable. The main assumptions are transversal nondegeneracy of the manifold of the ground states, linear dispersion (in the form of Strichartz estimates) and nonlinear Fermi Golden Rule. We allow the linearization of the equation at the soliton to have an arbitrary number of eigenvalues. The theory is tailor made for the application to the translational invariant NLS in space dimension 3. The proof is based on the extension of some tools of the theory of Hamiltonian systems (reduction theory, Darboux theorem, normal form) to the case of systems invariant under a symmetry group with unbounded generators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.