Abstract

The asymptotic stability property is studied for a nonisothermal plug flow tubular reactor model, which is described by semi-linear partial differential equations (PDE's) derived from mass and energy balance principles. It is reported that, under some condition on the model parameters, any constant temperature equilibrium profile is an asymptotically stable equilibrium of such model. The analysis is based on an asymptotic stability criterion for a class of infinitedimensional (distributed parameter) semi-linear Banach state space systems and the concept of strictly m-dissipative operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.