Abstract

In supercritical regime, the coupled model equations for the axially moving beam with simple support boundary conditions are considered. The critical speed is determined by linear bifurcation analysis, which is in agreement with the results in the literature. For the corresponding static equilibrium state, the second-order asymptotic nontrivial solutions are obtained through the multiple scales method. Meantime, the numerical solutions are also obtained based on the finite difference method. Comparisons among the analytical solutions, numerical solutions and solutions of integro-partial-differential equation of transverse which is deduced from coupled model equations are made. We find that the second-order asymptotic analytical solutions can well capture the nontrivial equilibrium state regardless of the amplitude of transverse displacement. However, the integro-partial-differential equation is only valid for the weak small-amplitude vibration axially moving slender beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.